Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Talanta ; 275: 126150, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38692046

ABSTRACT

The quantitative detection of luteinising hormone (LH) is critical for the study of the physiological mechanism of reproductive function and the assessment of infertility and the clinical treatment of reproductive disorders. However, conventional approaches for LH detection are mostly based on an antibody recognition module with the limitations of sensitivity, simplicity and cost. The development of robust LH sensing methods is therefore highly demanded for facilitating the diagnosis of LH-related diseases. We establish a convenient, amplified and sensitive fluorescent aptamer LH assay based on new target-triggered and cascaded autocatalytic hairpin assembly (C-aCHA) circuit amplification means via initiator sequence replication. Target LH molecules bind the aptamers in the aptamer/initiator duplexes to release the initiator sequences, which trigger CHA formation of DNA three-way junctions (TWJs) and the unfolding of fluorescently quenched signal hairpins to show amplified fluorescence. The TWJs further activate another CHA cycle for the yield of more initiator sequences to form the C-aCHA circuit amplification cycles, which lead to the unfolding of many signal hairpins to exhibit substantially magnified fluorescence recovery for detecting LH down to 8.56 pM in the range from 10 pM to 50 nM. In addition, the monitoring of trace LH in diluted serums by this sensing approach has been also verified. Our LH assay clearly outperforms current existing antibody-based methods and the C-aCHA signal amplification strategy can be easily extended as a robust means for sensitively monitoring various biomolecular markers with simple replacement of the corresponding aptamers for diverse applications.

2.
Dalton Trans ; 52(48): 18473-18479, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38014455

ABSTRACT

Sensitively monitoring metallothionein (MT), a heavy metal-binding protein with substantial cysteine content, is of significance for evaluating heavy metal poisoning in both humans and animals. Based on a new metal ion-coordinated DNA probe and the heavy metal ion binding capability of MT, as well as the substantial signal enhancement of the hybridization chain reaction (HCR) and rolling circle amplification (RCA), we demonstrate a highly sensitive fluorescence MT detection assay. MT binds the metal ions in the hairpin structured, metal ion-coordinated DNA probe to switch its hairpin structure into ssDNA, which triggers subsequent RCA reactions and HCRs to open plenty of fluorescently quenched signal hairpins to exhibit drastically amplified fluorescence recovery for assaying MT down to 0.58 nM within a dynamic range of 1-320 nM. In addition, the investigation of low contents of MT in diluted human serum by such an assay has also been verified, indicating its promising application potential for diagnosing heavy metal poisoning.


Subject(s)
Biosensing Techniques , Metals, Heavy , Humans , DNA/chemistry , DNA Probes/genetics , Nucleic Acid Hybridization , Heavy Metal Poisoning , Limit of Detection
3.
BMC Infect Dis ; 23(1): 707, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864131

ABSTRACT

BACKGROUND: This study's objective was to investigate the predictors for severe anemia, severe leukopenia, and severe thrombocytopenia when amphotericin B deoxycholate-based induction therapy is used in HIV-infected patients with talaromycosis. METHODS: A total of 170 HIV-infected patients with talaromycosis were enrolled from January 1st, 2019, to September 30th, 2020. RESULTS: Approximately 42.9%, 20.6%, and 10.6% of the enrolled patients developed severe anemia, severe leukopenia, and severe thrombocytopenia, respectively. Baseline hemoglobin level < 100 g/L (OR = 5.846, 95% CI: 2.765 ~ 12.363), serum creatinine level > 73.4 µmol/L (OR = 2.573, 95% CI: 1.157 ~ 5.723), AST/ALT ratio > 1.6 (OR = 2.479, 95% CI: 1.167 ~ 5.266), sodium level ≤ 136 mmol/liter (OR = 4.342, 95% CI: 1.747 ~ 10.789), and a dose of amphotericin B deoxycholate > 0.58 mg/kg/d (OR = 2.504, 95% CI:1.066 ~ 5.882) were observed to be independent risk factors associated with the development of severe anemia. Co-infection with tuberculosis (OR = 3.307, 95% CI: 1.050 ~ 10.420), and platelet level (per 10 × 109 /L) (OR = 0.952, 95% CI: 0.911 ~ 0.996) were shown to be independent risk factors associated with the development of severe leukopenia. Platelet level < 100 × 109 /L (OR = 2.935, 95% CI: 1.075 ~ 8.016) was identified as the independent risk factor associated with the development of severe thrombocytopenia. There was no difference in progression to severe anemia, severe leukopenia, and severe thrombocytopenia between the patients with or without fungal clearance at 2 weeks. 10 mg on the first day of amphotericin B deoxycholate was calculated to be independent risk factors associated with the development of severe anemia (OR = 2.621, 95% CI: 1.107 ~ 6.206). The group receiving a starting amphotericin B dose (10 mg, 20 mg, daily) exhibited the highest fungal clearance rate at 96.3%, which was significantly better than the group receiving a starting amphotericin B dose (5 mg, 10 mg, 20 mg, daily) (60.9%) and the group receiving a starting amphotericin B dose (5 mg, 15 mg, and 25 mg, daily) (62.9%). CONCLUSION: The preceding findings reveal risk factors for severe anemia, severe leukopenia, and severe thrombocytopenia. After treatment with Amphotericin B, these severe adverse events are likely unrelated to fungal clearance at 2 weeks. Starting amphotericin B deoxycholate at a dose of 10 mg on the first day may increase the risk of severe anemia but can lead to earlier fungal clearance. TRIAL REGISTRATION: ChiCTR1900021195. Registered 1 February 2019.


Subject(s)
Anemia , HIV Infections , Leukopenia , Thrombocytopenia , Humans , Amphotericin B/adverse effects , Antifungal Agents/therapeutic use , Prospective Studies , Induction Chemotherapy , Anemia/chemically induced , Anemia/drug therapy , Leukopenia/chemically induced , Leukopenia/drug therapy , HIV Infections/complications , HIV Infections/drug therapy , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy
4.
Anal Chem ; 95(33): 12514-12520, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37553880

ABSTRACT

Monitoring the molecular activation networks of cellular processes through fluorescence imaging to accurately elucidate the signaling pathways of mitochondrial apoptosis and the regulation of upstream and downstream molecules remains a current major challenge. In this work, a multicolor-encoded tetrahedral DNA framework (meTDF) carrying two pairs of catalytic hairpins is synthesized to monitor the intracellular upstream manganese superoxide dismutase (MnSOD) mRNA and the downstream cytochrome c (Cyt c) molecules for specific and sensitive detection of the mitochondrial apoptotic signaling pathway. These two types of molecules can trigger catalytic hairpin assembly (CHA) reactions with accelerated reaction kinetics for the hairpin pairs confined on meTDF to show highly amplified fluorescence for sensitive and simultaneous detection of MnSOD mRNA and Cyt c with detection limits of 3.7 pM and 0.23 nM in vitro, respectively. Moreover, the high stability and biocompatibility of the designed meTDF can facilitate efficient delivery of the probes into cells to monitor intracellular MnSOD mRNA and Cyt c for specific detection of the mitochondrial apoptosis pathway regulated by different drugs. With the successful demonstration of their robust capability, the meTDF nanoprobes can thus open new opportunities for detecting cell apoptotic mechanisms for studying the corresponding apoptotic signaling pathways and for screening potential therapeutic drugs.


Subject(s)
Apoptosis , DNA , Signal Transduction
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122633, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36965245

ABSTRACT

Methotrexate (MTX) is one of the commonly used therapeutic drugs for treating various tumors and autoimmune diseases. However, high dose usage of MTX may cause severe side effects and the monitoring of MTX is therefore critical. By coupling a new MTX aptamer-based proximity hybridization with polymerization/nicking reaction (PNR) recycling amplifications, we develop here a sensitive and label-free colorimetric approach for MTX detection in diluted human serums. The MTX molecules can bind and switch the conformation of aptamers in the DNA duplex probes to initiate subsequent proximity hybridization-induced PNR recycling processes for the yield of a great deal of G-quadruplexes with the assistance of two single-stranded assistant DNA sequences. Hemin subsequently combines with these G-quadruplexes to produce lots of G-quadruplex/hemin horseradish peroxidase (HRP) mimicking DNAzymes, which then catalyze intensified color transition of the substrate solution to exhibit highly magnified UV-Vis absorption for label-free and ultrasensitive detection of MTX at concentration as low as 5.66 nM in the range of 10 nM to 1 µM. High selectivity of the developed method also enables it to monitor low levels of MTX in diluted serum samples, which offers such a method enormous potentials for convenient and highly sensitive detection of other small molecule drugs for various clinical applications.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , Humans , Methotrexate , Polymerization , Colorimetry/methods , Hemin/chemistry , Biosensing Techniques/methods , DNA, Catalytic/chemistry , DNA, Single-Stranded , Aptamers, Nucleotide/chemistry , Limit of Detection
6.
Chem Sci ; 13(37): 11132-11139, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320481

ABSTRACT

The targeted and direct intracellular delivery of proteins plays critical roles in biological research and disease treatments, yet remains highly challenging. Current solutions to such a challenge are limited by the modification of proteins that may potentially alter protein functions inside cells or the lack of targeting capability. Herein, we develop a stimulus-responsive and bivalent aptamer hexahedron DNA framework (HDF) for the targeted and direct delivery of native therapeutic proteins into cancer cells. The unmodified proteins are caged inside the HDF nanostructures assembled from six programmable single stranded DNAs to protect the proteins from degradation by cathepsins and enhance their targeting capability and delivery efficiency with the nanostructure-integrated aptamers. In addition, the protein drugs can be selectively released from the HDF nanostructures by the intracellular ATP molecules to induce tumor cell apoptosis, highlighting their promising application potential for cell biology and precise protein medicines.

7.
Anal Chem ; 94(46): 16079-16085, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36356219

ABSTRACT

Accurate and specific imaging of low-abundance intracellular microRNAs (miRNAs) is crucial for monitoring cellular processes and disease diagnosis. Despite the fact that nucleic acid amplification technologies have shown great advantages for the detection of trace targets, their live cell imaging applications remain a major challenge because of the insufficient stability and slow reaction kinetics of the probes in cellular delivery and imaging. Herein, we demonstrate the synthesis of DNA-cross-linked polymeric lighting-up nanogels (DPLNs) through the DNA hairpin-based hybridization chain reaction within nanoscale-confined space for monitoring and imaging live cell miRNA-21 with high sensitivity. Cascaded catalytic hairpin assembly of two hairpin signal probes confined in the DPLNs can be triggered by the target miRNA, causing substantially amplified fluorescence resonance energy transfer signals with accelerated reaction kinetics. Moreover, the DPLNs show low cytotoxicity and highly enhanced nuclease resistance and can be successfully delivered into live cells for imaging low levels of miRNA-21. In addition, the DPLN probes can be readily tuned by specific sequences for monitoring various molecular targets in live cells for important biological and biomedical applications.


Subject(s)
Biosensing Techniques , MicroRNAs , MicroRNAs/genetics , Nanogels , DNA/genetics , Nucleic Acid Hybridization , Polymers , Biosensing Techniques/methods
8.
Anal Chim Acta ; 1230: 340393, 2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36192064

ABSTRACT

The concentration variation of phenylalanine (Phe), an essential amino acid in humans, can cause metabolism disorders and even mental disability. Sensitive and convenient monitoring of Phe is therefore important for disease diagnosis. We describe here the establishment of a new aptamer-based, sensitive and label-free colorimetric Phe detection strategy by integrating catalytic hairpin assembly (CHA) and Mg2+-dependent DNAzyme amplification cascades. The target Phe coordinates with pentamethylcyclopentadienyl rhodium(III) chloride dimer [(Cp*RhCl2)2] to form a complex that has a high affinity to the corresponding aptamer sequence. Upon its binding to the aptamers in DNA duplex probes, ssDNA strands are released to trigger subsequent CHA reactions for the formation of many DNAzymes, which cleave the substrate signal probes to liberate lots of CHA initiation strands and free G-quadruplexes to realize the cascaded amplifications. Hemin further associates with the many G-quadruplexes to yield hemin/G-quadruplex mimicking peroxidases, which catalyze solution of substrate to exhibit highly enhanced UV-vis adsorption for detecting Phe at 0.19 µM level. At the meantime, the monitoring of Phe in diluted serums with high selectivity has also been demonstrated by the developed method, indicating its potential for simple diagnosis of Phe-related diseases.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , DNA, Catalytic , G-Quadruplexes , Rhodium , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Chlorides , Colorimetry/methods , DNA Probes/chemistry , DNA, Catalytic/chemistry , Hemin/chemistry , Humans , Peroxidases/metabolism , Phenylalanine
9.
J Mater Chem B ; 10(40): 8315-8321, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36165395

ABSTRACT

Small interfering RNA (siRNA) has increasingly evolved as a potent therapeutic solution for several pathological conditions including cancers via post-transcriptional oncogene suppression in cellular pathways. And, the key for siRNA-based therapy highly relies on the successful siRNAs delivery into the target cells, which is significantly challenged by their instability, poor cellular uptake and targeting capability. To overcome these issues, herein, a new type of RNA nanostructure, the bivalent aptamer and terminus-free siRNA junction, is synthesized and employed for effective gene silencing in cancer cells. Such a siRNA junction can be readily prepared by the self-assembly of three RNA sequences and subsequent ligation of the nicks. The as-synthesized siRNA junction shows highly improved enzymatic stability and targeting capability and can be efficiently delivered into the target cells to induce cell apoptosis. With these integrated advantages, the siRNA junction can therefore offer new potentials for the design of different siRNA therapeutics for various diseases.


Subject(s)
Aptamers, Nucleotide , Nanostructures , Neoplasms , Humans , RNA, Small Interfering/therapeutic use , Gene Silencing , Nanostructures/chemistry , Aptamers, Nucleotide/genetics , Neoplasms/therapy , Neoplasms/drug therapy
10.
Anal Chem ; 94(27): 9927-9933, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35749565

ABSTRACT

Mature microRNAs (miRNAs) are closely associated with cell proliferation and differentiation, stress response, and carcinogenesis, and monitoring intracellular miRNAs can contribute to the studies of their regulatory roles and molecular mechanisms of disease progression. However, accurate and reliable detection of mature miRNAs in complex physiological environments encounters the challenge of undesired detection accuracy ascribed to the coexistence of their precursor microRNAs (pre-miRNAs) and degradation of sensing probes. Here, we demonstrate the synthesis of a new size-discriminative DNA nanocage framework (DNF) for the sensitive monitoring of mature miRNA-21 in living cells with high accuracy via cascaded toehold-mediated strand displacement reaction (TSDR) amplifications. The DNF is prepared by a simple self-assembly of six ssDNAs, and the signal probes are docked inside the DNF. Because of its rigid framework structure, the DNF shows enhanced enzyme stability. Upon entering cells, only the short target mature miRNA-21 sequences instead of the large-sized pre-miRNAs are allowed to be accommodated inside the cavity of the DNF owing to the size-discriminative capability of the DNF. The cascaded TSDR amplifications can thus be activated by the mature miRNA-21 together with endogenous ATP to result in magnified fluorescence for sensitive detection and selective discrimination of miRNA-21 from the interference pre-miRNAs. Our results indicate that the DNF probes can offer robust sensing means for detecting various intracellular mature miRNAs with high accuracy for disease diagnoses and biomedical studies.


Subject(s)
MicroRNAs , DNA/chemistry , DNA/genetics , DNA Probes/chemistry , Fluorescence , MicroRNAs/chemistry , MicroRNAs/genetics
11.
Anal Chim Acta ; 1217: 340028, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35690424

ABSTRACT

Proteins play vital roles in regulating a series of living activities and can be potentially considered to be useful indicators for diagnosing various diseases. Here, a target-triggered transcription cascade amplification strategy with the use of the fluorescence switch-on RNA aptamer is constructed for label-free and sensitive platelet-derived growth factor-BB (PDGF-BB) protein biomarker detection. The target molecule of PDGF-BB binds a rationally designed multifunctional hairpin probe to switch its structure and to expose a primer binding region. The primer sequence further binds such a region to initiate the target recycling and lighting-up RNA aptamer transcription cascade cycles to yield tremendous RNA aptamers. And, the fluorescence of the organic dye is substantially enhanced upon binding to these RNA aptamers for realizing highly sensitive and label-free PDGF-BB detection with the detection limit being lowered to 0.8 pM. Moreover, the developed strategy has superior selectivity and exhibits a promising potential to detect PDGF-BB spiked into serums with buffer dilution, which makes this method an attractive sensing system for detecting other biomarkers at trace levels.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Aptamers, Nucleotide/chemistry , Becaplermin , Biosensing Techniques/methods , Limit of Detection , Proteins , Proto-Oncogene Proteins c-sis
SELECTION OF CITATIONS
SEARCH DETAIL
...